
PNG (Portable Network Graphics) Specification, Tenth Draft

Revision date: 5 May, 1995

Copyright 1995, Thomas Boutell. Permission is granted to reproduce this specification in
complete and unaltered form. Excerpts may be printed with the following notice: "excerpted
from the PNG (Portable Network Graphics) specification, tenth draft." No notice is required
in software that follows this specification; notice is only required when reproducing or
excerpting from the specification itself.

Contents

0. Status
1. Introduction
2. Data Representation

Integers and byte order
Color values
Image layout
Alpha channel
Filtering
Interlaced data order
Gamma correction
Text strings

3. File Structure
PNG file signature
Chunk layout
Chunk naming conventions
CRC algorithm

4. Chunk Specifications
Critical Chunks
Ancillary Chunks
Summary of Standard Chunks
Additional Chunk Types

5. Deflate/Inflate Compression
6. Filter Algorithms

Filter type 0: None
Filter type 1: Sub
Filter type 2: Up
Filter type 3: Average
Filter type 4: Paeth

7. Chunk Ordering Rules
8. Multi−Image Extension
9. Recommendations for Encoders

Bitdepth scaling
Encoder gamma handling
Alpha channel creation
Filter selection
Text chunk processing
Registering proprietary chunks

10. Recommendations for Decoders
Chunk error checking
Pixel dimensions
Truecolor image handling
Decoder gamma handling
Background color

PNG Specification, Tenth Draft Page: 1

Alpha channel processing
Progressive display
Palette histogram usage
Text chunk processing

11. Appendix: Rationale
Why a new file format?
Why these features?
Why not these features?
Why not use format XYZ?
Byte order
Interlacing
Why gamma encoding?
Non−premultiplied alpha
Filtering
Text strings
PNG file signature
Chunk layout
Chunk naming conventions
Palette histograms

12. Appendix: Sample CRC Code
13. Credits

0. Status

This is the tenth draft of the PNG specification. All future drafts will be backward−compatible
with the graphics file format described by this document. Implementations are invited, and a
reference implementation is under development; see below.

Archive sites

The latest versions of this document and related information can always be found at the PNG
FTP archive site, ftp.uu.net:/graphics/png/. The maintainers of the PNG specification
can be contacted by e−mail at png−info@uunet.uu.net.

At present, this document is available on the World Wide Web from
http://sunsite.unc.edu/boutell/png.html, but this location may not be as
permanent as the ones above.

Changes since draft 9

Extensive editing
Clarified interlaced representation of very small images: no filter bytes are present in an
empty pass
Chunk ordering rules clarified
Limits set on tEXt chunk keyword length
cHRM chunk description corrected: CIE x and y, not X and Y
More extensive explanation of alpha and gamma processing
Separate document created for extension chunk types
Permanent archive site and e−mail contact point established

Reference implementation

It is anticipated that a reference implementation will be available before the end of May 1995.
The reference implementation will be freely usable in all applications, including commercial
applications.

When finished, the reference implementation will be available from the PNG FTP archive site,

PNG Specification, Tenth Draft Page: 2

ftp.uu.net:/graphics/png/.

A set of test images will also be prepared and will be available from the same site.

1. Introduction

The PNG format is intended to provide a portable, legally unencumbered, well−compressed,
well−specified standard for lossless bitmapped image files.

Although the initial motivation for developing PNG was to replace GIF, the design provides some
useful new features not available in GIF, with minimal cost to developers.

GIF features retained in PNG include:

Palette−mapped images of up to 256 colors.
Streamability: files can be read and written strictly serially, thus allowing the file format to
be used as a communications protocol for on−the−fly generation and display of images.
Progressive display: a suitably prepared image file can be displayed as it is received over a
communications link, yielding a low−resolution image very quickly with gradual
improvement of detail thereafter.
Transparency: portions of the image can be marked as transparent, allowing the effect of a
nonrectangular image area to be achieved.
Ancillary information: textual comments and other data can be stored within the image
file.
Complete hardware and platform independence.
Effective, 100% lossless compression.

Important new features of PNG, not available in GIF, include:

Truecolor images of up to 48 bits per pixel.
Grayscale images of up to 16 bits per pixel.
Full alpha channel (general transparency masks).
Image gamma indication, allowing automatic brightness/contrast adjustment.
Reliable, straightforward detection of file corruption.
Faster initial presentation in progressive display mode.

PNG is intended to be:

Simple and portable: PNG should be widely implementable with reasonably small effort
for developers.
Legally unencumbered: to the best of the knowledge of the PNG authors, no algorithms
under legal challenge are used.
Well compressed: both palette−mapped and truecolor images are compressed as effectively
as in any other widely used lossless format, and in most cases more effectively.
Interchangeable: any standard−conforming PNG decoder will read all conforming PNG
files.
Flexible: the format allows for future extensions and private add−ons, without
compromising interchangeability of basic PNG.
Robust: the design supports full file integrity checking as well as simple, quick detection of
common transmission errors.

The main part of this specification simply gives the definition of the file format. An appendix
gives the rationale for many design decisions. Although the rationale is not part of the formal
specification, reading it may help implementors to understand the design. Cross−references in the
main text point to relevant parts of the rationale.

See Rationale: Why a new file format?, Why these features?, Why not these features?, Why not

PNG Specification, Tenth Draft Page: 3

use format XYZ?.

Pronunciation

PNG is pronounced "ping".

2. Data Representation

This chapter discusses basic data representations used in PNG files, as well as the expected
representation of the image data.

Integers and byte order

All integers that require more than one byte will be in network byte order, which is to say the most
significant byte comes first, then the less significant bytes in descending order of significance
(MSB LSB for two−byte integers, B3 B2 B1 B0 for four−byte integers). The highest bit (value
128) of a byte is numbered bit 7; the lowest bit (value 1) is numbered bit 0. Values are unsigned
unless otherwise noted. Values explicitly noted as signed are represented in two’s complement
notation.

See Rationale: Byte order.

Color values

All color values range from zero (representing black) to most intense at the maximum value for
the bit depth. Color values may represent either grayscale or RGB color data. Note that the
maximum value at a given bit depth is not 2^bitdepth, but rather (2^bitdepth)−1. Intensity is not
necessarily linear; the gAMA chunk specifies the gamma characteristic of the source device, and
viewers are strongly encouraged to properly compensate. See Gamma correction, below.

Source data with a precision not directly supported in PNG (for example, 5 bit/sample truecolor)
must be scaled up to the next higher supported bit depth. Such scaling is reversible and hence
incurs no loss of data, while it reduces the number of cases that decoders must cope with. See
Recommendations for Encoders: Bitdepth scaling.

Image layout

PNG images are laid out as a rectangular pixel array, with pixels appearing left−to−right within
each scanline, and scanlines appearing top−to−bottom. (For progressive display purposes, the data
may not actually be transmitted in this order; see Interlaced data order.) The size of each pixel is
determined by the bit depth, which is the number of bits per stored value in the image data.

Three types of pixels are supported:

Palette−mapped pixels are represented by a single value that is an index into a supplied
palette. The bit depth determines the maximum number of palette entries, not the color
precision within the palette.
Grayscale pixels are represented by a single value that is a grayscale level, where zero is
black and the largest value for the bit depth is white.
Truecolor pixels are represented by three−value sequences: red (zero = black, max = red)
appears first, then green (zero = black, max = green), then blue (zero = black, max = blue).
The bit depth specifies the size of each value, not the total pixel size.

Optionally, grayscale and truecolor pixels can also include an alpha value, as described in the next
section.

In all cases, pixels are packed into scanlines consecutively, without wasted space between pixels.
(The allowable bit depths are restricted so that the packing is simple and efficient.) When pixels

PNG Specification, Tenth Draft Page: 4

are less than 8 bits deep, they are packed into bytes with the leftmost pixel in the high−order bits
of a byte, the rightmost in the low−order bits.

However, scanlines always begin on byte boundaries. When pixels are less than 8 bits deep, if the
scanline width is not evenly divisible by the number of pixels per byte then the low−order bits in
the last byte of each scanline are wasted. The contents of the padding bits added to fill out the last
byte of a scanline are unspecified.

An additional "filter" byte is added to the beginning of every scanline, as described in detail below.
The filter byte is not considered part of the image data, but it is included in the data stream sent to
the compression step.

Alpha channel

An alpha channel, representing transparency levels on a per−pixel basis, may be included in
grayscale and truecolor PNG images.

An alpha channel value of 0 represents full transparency, and a value of (2^bitdepth)−1
represents a fully opaque pixel. Intermediate values indicate partially transparent pixels that may
be combined with a background image to yield a composite image.

Alpha channels may be included with images that have either 8 or 16 bits per sample, but not with
images that have fewer than 8 bits per sample. Alpha values are represented with the same bit
depth used for the image values. The alpha value is stored immediately following the grayscale or
RGB values of the pixel.

The color stored for a pixel is not affected by the alpha value assigned to the pixel. This rule is
sometimes called "unassociated" or "non premultiplied" alpha. (Another common technique is to
store pixel values premultiplied by the alpha fraction; in effect, the image is already composited
against a black background. PNG does not use premultiplied alpha.)

Transparency control is also possible without the storage cost of a full alpha channel. In a palette
image, an alpha value may be defined for each palette entry. In grayscale and truecolor images, a
single pixel value may be identified as being "transparent". These techniques are controlled by the
tRNS ancillary chunk type.

If no alpha channel nor tRNS chunk is present, all pixels in the image are to be treated as fully
opaque.

Viewers may support transparency control partially, or not at all.

See Rationale: Non−premultiplied alpha, Recommendations for Encoders: Alpha channel
creation, and Recommendations for Decoders: Alpha channel processing.

Filtering

PNG allows the image data to be filtered before it is compressed. The purpose of filtering is to
improve the compressibility of the data. The filter step itself does not reduce the size of the data.
All PNG filters are strictly lossless.

PNG defines several different filter algorithms, including "none" which indicates no filtering. The
filter algorithm is specified for each scanline by a filter type byte which precedes the filtered
scanline in the precompression data stream. An intelligent encoder may switch filters from one
scanline to the next. The method for choosing which filter to employ is up to the encoder.

See Filter Algorithms and Rationale: Filtering.

Interlaced data order

PNG Specification, Tenth Draft Page: 5

A PNG image can be stored in interlaced order to allow progressive display. The purpose of this
feature is to allow images to "fade in" when they are being displayed on−the−fly. Interlacing
slightly expands the file size on average, but it gives the user a meaningful display much more
rapidly. Note that decoders are required to be able to read interlaced images, whether or not they
actually perform progressive display.

With interlace type 0, pixels are stored sequentially from left to right, and scanlines sequentially
from top to bottom (no interlacing).

Interlace type 1, known as Adam7 after its author, Adam M. Costello, consists of seven distinct
passes over the image. Each pass transmits a subset of the pixels in the image. The pass in which
each pixel is transmitted is defined by replicating the following 8−by−8 pattern over the entire
image, starting at the upper left corner:

1 6 4 6 2 6 4 6
7 7 7 7 7 7 7 7
5 6 5 6 5 6 5 6
7 7 7 7 7 7 7 7
3 6 4 6 3 6 4 6
7 7 7 7 7 7 7 7
5 6 5 6 5 6 5 6
7 7 7 7 7 7 7 7

Within each pass, the selected pixels are transmitted left to right within a scanline, and selected
scanlines sequentially from top to bottom. For example, pass 2 contains pixels 4, 12, 20, etc. of
scanlines 0, 8, 16, etc. (numbering from 0,0 at the upper left corner). The last pass contains the
entirety of scanlines 1, 3, 5, etc.

The data within each pass is laid out as though it were a complete image of the appropriate
dimensions. For example, if the complete image is 8x8 pixels, then pass 3 will contain a single
scanline containing two pixels. When pixels are less than 8 bits deep, each such scanline is padded
to fill an integral number of bytes (see Image layout). Filtering is done on this reduced image in
the usual way, and a filter type byte is transmitted before each of its scanlines (see Filter
Algorithms). Notice that the transmission order is defined so that all the scanlines transmitted in
a pass will have the same number of pixels; this is necessary for proper application of some of the
filters.

Caution: If the image contains fewer than five columns or fewer than five rows, some passes will
be entirely empty. Encoder and decoder authors must be careful to handle this case correctly. In
particular, filter bytes are only associated with nonempty scanlines; no filter bytes are present in
an empty pass.

See Rationale: Interlacing and Recommendations for Decoders: Progressive display.

Gamma correction

Gamma is a way of defining the brightness reproduction curve of a camera or display device.
When brightness levels are expressed as fractions in the range 0 to 1, such a device produces an
output brightness level "obright" from an input brightness level "ibright" according to the
equation

 obright = ibright ^ gamma

PNG images may specify the gamma of the camera (or simulated camera) that produced the
image, and thus the gamma of the image with respect to the original scene. To get accurate tone
reproduction, the gamma of the display device and the gamma of the image file should be
reciprocals of each other, since the overall gamma of the system is the product of the gammas of
each component. So, for example, if an image with a gamma of 0.4 is displayed on a CRT with a

PNG Specification, Tenth Draft Page: 6

gamma of 2.5, the overall gamma of the system is 1.0. An overall gamma of 1.0 gives correct tone
reproduction.

In practice, images of gamma around 1.0 and gamma around 0.45 are both widely found. PNG
expects encoders to record the gamma if known, and it expects decoders to correct the image
gamma if necessary for proper display on their display hardware. Failure to correct for image
gamma leads to a too−dark or too−light display.

Gamma correction is not applied to the alpha channel, if any. Alpha values always represent a
linear fraction of full opacity.

See Rationale: Why gamma encoding?, Recommendations for Encoders: Encoder gamma
handling, and Recommendations for Decoders: Decoder gamma handling.

Text strings

A PNG file can store text associated with the image, such as an image description or copyright
notice. Keywords are used to indicate what each text string represents.

ISO 8859−1 (Latin−1) is the character set recommended for use in text strings. This character set
is a superset of 7−bit ASCII. Files defining the character set may be obtained from the PNG FTP
archives, ftp.uu.net:/graphics/png/.

Character codes not defined in Latin−1 may be used, but are unlikely to port across platforms
correctly. (For that matter, any characters beyond 7−bit ASCII will not display correctly on all
platforms; but Latin−1 represents a set which is widely portable.)

Provision is also made for the storage of compressed text.

See Rationale: Text strings.

3. File Structure

A PNG file consists of a PNG signature followed by a series of chunks. This chapter defines the
signature and the basic properties of chunks. Individual chunk types are discussed in the next
chapter.

PNG file signature

The first eight bytes of a PNG file always contain the following (decimal) values:

137 80 78 71 13 10 26 10

This signature indicates that the remainder of the file contains a single PNG image, consisting of a
series of chunks beginning with an IHDR chunk and ending with an IEND chunk.

See Rationale: PNG file signature.

Chunk layout

Each chunk consists of four parts:

Length
A 4−byte unsigned integer giving the number of bytes in the chunk’s data field. The length
counts only the data field, not itself, the chunk type code, or the CRC. Zero is a valid
length. Although encoders and decoders should treat the length as unsigned, its value may
not exceed (2^31)−1 bytes.

Chunk Type

PNG Specification, Tenth Draft Page: 7

A 4−byte chunk type code. For convenience in description and in examining PNG files,
type codes are restricted to consist of uppercase and lowercase ASCII letters (A−Z, a−z).
However, encoders and decoders should treat the codes as fixed binary values, not
character strings. For example, it would not be correct to represent the type code IDAT by
the EBCDIC equivalents of those letters. Additional naming conventions for chunk types
are discussed in the next section.

Chunk Data
The data bytes appropriate to the chunk type, if any. This field may be of zero length.

CRC
A 4−byte CRC (Cyclical Redundancy Check) calculated on the preceding bytes in that
chunk, including the chunk type code and chunk data fields, but not including the length
field. The CRC is always present, even for empty chunks such as IEND. The CRC
algorithm is specified below.

The chunk data length may be any number of bytes up to the maximum; therefore, implementors
may not assume that chunks are aligned on any boundaries larger than bytes.

Chunks may appear in any order, subject to the restrictions placed on each chunk type. (One
notable restriction is that IHDR must appear first and IEND must appear last; thus the IEND
chunk serves as an end−of−file marker.) Multiple chunks of the same type may appear, but only if
specifically permitted for that type.

See Rationale: Chunk layout.

Chunk naming conventions

Chunk type codes are assigned in such a way that a decoder can determine some properties of a
chunk even if it does not recognize the type code. These rules are intended to allow safe, flexible
extension of the PNG format, by allowing a decoder to decide what to do when it encounters an
unknown chunk. The naming rules are not normally of interest when a decoder does recognize the
chunk’s type.

Four bits of the type code, namely bit 5 (value 32) of each byte, are used to convey chunk
properties. This choice means that a human can read off the assigned properties according to
whether each letter of the type code is uppercase (bit 5 is 0) or lowercase (bit 5 is 1). However,
decoders should test the properties of an unknown chunk by numerically testing the specified bits;
testing whether a character is uppercase or lowercase is inefficient, and even incorrect if a
locale−specific case definition is used.

It is also worth noting that the property bits are an inherent part of the chunk name, and hence
are fixed for any chunk type. Thus, TEXT and Text are completely unrelated chunk type codes.
Decoders should recognize codes by simple four−byte literal comparison; it is incorrect to perform
case conversion on type codes.

The semantics of the property bits are:

First Byte: 0 (uppercase) = critical, 1 (lowercase) = ancillary
Chunks which are not strictly necessary in order to meaningfully display the contents of
the file are known as "ancillary" chunks. Decoders encountering an unknown chunk in
which the ancillary bit is 1 may safely ignore the chunk and proceed to display the image.
The time chunk (tIME) is an example of an ancillary chunk.

Chunks which are critical to the successful display of the file’s contents are called "critical"
chunks. Decoders encountering an unknown chunk in which the ancillary bit is 0 must
indicate to the user that the image contains information they cannot safely interpret. The
image header chunk (IHDR) is an example of a critical chunk.

PNG Specification, Tenth Draft Page: 8

Second Byte: 0 (uppercase) = public, 1 (lowercase) = private
If the chunk is public (part of this specification or a later edition of this specification), its
second letter is uppercase. If your application requires proprietary chunks, and you have no
interest in seeing the software of other vendors recognize them, use a lowercase second
letter in the chunk name. Such names will never be assigned in the official specification.
Note that there is no need for software to test this property bit; it simply ensures that
private and public chunk names will not conflict.

Third Byte: reserved, must be 0 (uppercase) always
The significance of the case of the third letter of the chunk name is reserved for possible
future expansion. At the present time all chunk names must have uppercase third letters.

Fourth Byte: 0 (uppercase) = unsafe to copy, 1 (lowercase) = safe to copy
This property bit is not of interest to pure decoders, but it is needed by PNG editors
(programs that modify a PNG file).

If a chunk’s safe−to−copy bit is 1, the chunk may be copied to a modified PNG file whether
or not the software recognizes the chunk type, and regardless of the extent of the file
modifications.

If a chunk’s safe−to−copy bit is 0, it indicates that the chunk depends on the image data. If
the program has made any changes to critical chunks, including addition, modification,
deletion, or reordering of critical chunks, then unrecognized unsafe chunks must not be
copied to the output PNG file. (Of course, if the program does recognize the chunk, it may
choose to output an appropriately modified version.)

A PNG editor is always allowed to copy all unrecognized chunks if it has only added,
deleted, or modified ancillary chunks. This implies that it is not permissible to make
ancillary chunks that depend on other ancillary chunks.

PNG editors that do not recognize a critical chunk must report an error and refuse to
process that PNG file at all. The safe/unsafe mechanism is intended for use with ancillary
chunks. The safe−to−copy bit will always be 0 for critical chunks.

Rules for PNG editors are discussed further under Chunk Ordering Rules.

For example, the hypothetical chunk type name "bLOb" has the property bits:

 bLOb <−− 32 bit Chunk Name represented in ASCII form
 ||||
 |||’− Safe to copy bit is 1 (lower case letter; bit 5 of byte is 1)
 ||’−− Reserved bit is 0 (upper case letter; bit 5 of byte is 0)
 |’−−− Private bit is 0 (upper case letter; bit 5 of byte is 0)
 ’−−−− Ancillary bit is 1 (lower case letter; bit 5 of byte is 1)

Therefore, this name represents an ancillary, public, safe−to−copy chunk.

See Rationale: Chunk naming conventions.

CRC algorithm

Chunk CRCs are calculated using standard CRC methods with pre and post conditioning. The
CRC polynomial employed is as follows:

x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

The 32−bit CRC register is initialized to all 1’s, and then the data from each byte is processed
from the least significant bit (1) to the most significant bit (128). After all the data bytes are
processed, the CRC register is inverted (its ones complement is taken). This value is transmitted

PNG Specification, Tenth Draft Page: 9

(stored in the file) MSB first. For the purpose of separating into bytes and ordering, the least
significant bit of the 32−bit CRC is defined to be the coefficient of the x^31 term.

Practical calculation of the CRC always employs a precalculated table to greatly accelerate the
computation. See Appendix: Sample CRC Code.

4. Chunk Specifications

This chapter defines the standard types of PNG chunks.

Critical Chunks

All implementations must understand and successfully render the standard critical chunks. A
valid PNG image must contain an IHDR chunk, one or more IDAT chunks, and an IEND chunk.

IHDR Image Header
This chunk must appear FIRST. Its contents are:

Width: 4 bytes
Height: 4 bytes
Bit depth: 1 byte
Color type: 1 byte
Compression type: 1 byte
Filter type: 1 byte
Interlace type: 1 byte

Width and height give the image dimensions in pixels. They are 4−byte integers. Zero is an
invalid value. The maximum for each is (2^31)−1 in order to accommodate languages
which have difficulty with unsigned 4−byte values.

Bit depth is a single−byte integer giving the number of bits per pixel (for palette images) or
per sample (for grayscale and truecolor images). Valid values are 1, 2, 4, 8, and 16,
although not all values are allowed for all color types.

Color type is a single−byte integer that describes the interpretation of the image data.
Color type values represent sums of the following values: 1 (palette used), 2 (color used),
and 4 (full alpha used). Valid values are 0, 2, 3, 4, and 6.

Bit depth restrictions for each color type are imposed both to simplify implementations
and to prohibit certain combinations that do not compress well in practice. Decoders must
support all legal combinations of bit depth and color type. (Note that bit depths of 16 are
easily supported on 8−bit display hardware by dropping the least significant byte.) The
allowed combinations are:

Color Allowed Interpretation
Type Bit Depths

0 1,2,4,8,16 Each pixel value is a grayscale level.

2 8,16 Each pixel value is an R,G,B series.

3 1,2,4,8 Each pixel value is a palette index;
 a PLTE chunk must appear.

4 8,16 Each pixel value is a grayscale level,
 followed by an alpha channel level.

6 8,16 Each pixel value is an R,G,B series,
 followed by an alpha channel level.

Compression type is a single−byte integer that indicates the method used to compress the
image data. At present, only compression type 0 (deflate/inflate compression with a 32K

PNG Specification, Tenth Draft Page: 10

sliding window) is defined. All standard PNG images must be compressed with this scheme.
The compression type code is provided for possible future expansion or proprietary
variants. Decoders must check this byte and report an error if it holds an unrecognized
code. See Deflate/Inflate Compression for details.

Filter type is a single−byte integer that indicates the preprocessing method applied to the
image data before compression. At present, only filter type 0 (adaptive filtering with five
basic filter types) is defined. As with the compression type code, decoders must check this
byte and report an error if it holds an unrecognized code. See Filter Algorithms for details.

Interlace type is a single−byte integer that indicates the transmission order of the pixel
data. Two values are currently defined: 0 (no interlace) or 1 (Adam7 interlace). See
Interlaced data order for details.

PLTE Palette
This chunk’s contents are from 1 to 256 palette entries, each a three−byte series of the
form:

red: 1 byte (0 = black, 255 = red)
green: 1 byte (0 = black, 255 = green)
blue: 1 byte (0 = black, 255 = blue)

The number of entries is determined from the chunk length. A chunk length not divisible
by 3 is an error.

This chunk must appear for color type 3, and may appear for color types 2 and 6. If this
chunk does appear, it must precede the first IDAT chunk. There cannot be more than one
PLTE chunk.

For color type 3 (palette data), the PLTE chunk is required. The first entry in PLTE is
referenced by pixel value 0, the second by pixel value 1, etc. The number of palette entries
must not exceed the range that can be represented by the bit depth (for example, 2^4 = 16
for a bit depth of 4). It is permissible to have fewer entries than the bit depth would allow.
In that case, any out−of−range pixel value found in the image data is an error.

For color types 2 and 6 (truecolor), the PLTE chunk is optional. If present, it provides a
recommended set of from 1 to 256 colors to which the truecolor image may be quantized if
the viewer cannot display truecolor directly. If PLTE is not present, such a viewer must
select colors on its own, but it is often preferable for this to be done once by the encoder.

Note that the palette uses 8 bits (1 byte) per value regardless of the image bit depth
specification. In particular, the palette is 8 bits deep even when it is a suggested
quantization of a 16−bit truecolor image.

IDAT Image Data
This chunk contains the actual image data. To create this data, begin with image scanlines
represented as described under Image layout; the layout and total size of this raw data are
determinable from the IHDR fields. Then filter the image data according to the filtering
method specified by the IHDR chunk. (Note that with filter method 0, the only one
currently defined, this implies prepending a filter type byte to each scanline.) Finally,
compress the filtered data using the compression method specified by the IHDR chunk.
The IDAT chunk contains the output datastream of the compression algorithm. To read
the image data, reverse this process.

There may be multiple IDAT chunks; if so, they must appear consecutively with no other
intervening chunks. The compressed datastream is then the concatenation of the contents
of all the IDAT chunks. The encoder may divide the compressed data stream into IDAT
chunks as it wishes. (Multiple IDAT chunks are allowed so that encoders can work in a

PNG Specification, Tenth Draft Page: 11

fixed amount of memory; typically the chunk size will correspond to the encoder’s buffer
size.) It is important to emphasize that IDAT chunk boundaries have no semantic
significance and can appear at any point in the compressed datastream. A PNG file in
which each IDAT chunk contains only one data byte is legal, though remarkably wasteful
of space. (For that matter, zero−length IDAT chunks are legal, though even more
wasteful.)

See Filter Algorithms and Deflate/Inflate Compression for details.

IEND Image Trailer
This chunk must appear LAST. It marks the end of the PNG data stream. The chunk’s
data field is empty.

Ancillary Chunks

All ancillary chunks are optional, in the sense that encoders need not write them and decoders
may ignore them. However, encoders are encouraged to write the standard ancillary chunks when
the information is available, and decoders are encouraged to interpret these chunks when
appropriate and feasible.

The standard ancillary chunks are listed in alphabetical order. This is not necessarily the order in
which they would appear in a file.

bKGD Background Color
This chunk specifies a default background color against which the image may be presented.
Note that viewers are not bound to honor this chunk; a viewer may choose to use a
different background color.

For color type 3 (palette), the bKGD chunk contains:

palette index: 1 byte

The value is the palette index of the color to be used as background.

For color types 0 and 4 (grayscale, with or without alpha), bKGD contains:

gray: 2 bytes, range 0 .. (2^bitdepth) − 1

(For consistency, 2 bytes are used regardless of the image bit depth.) The value is the gray
level to be used as background.

For color types 2 and 6 (RGB, with or without alpha), bKGD contains:

red: 2 bytes, range 0 .. (2^bitdepth) − 1
green: 2 bytes, range 0 .. (2^bitdepth) − 1
blue: 2 bytes, range 0 .. (2^bitdepth) − 1

(For consistency, 2 bytes per sample are used regardless of the image bit depth.) This is the
RGB color to be used as background.

When present, the bKGD chunk must precede the first IDAT chunk, and must follow the
PLTE chunk, if any.

See Recommendations for Decoders: Background color.

cHRM Primary Chromaticities and White Point
Applications that need precise specification of colors in a PNG file may use this chunk to
specify the chromaticities of the red, green, and blue primaries used in the image, and the
referenced white point. These values are based on the 1931 CIE (International Color

PNG Specification, Tenth Draft Page: 12

Committee) XYZ color space. Only the chromaticities (x and y) are specified. The chunk
layout is:

White Point x: 4 bytes
White Point y: 4 bytes
Red x: 4 bytes
Red y: 4 bytes
Green x: 4 bytes
Green y: 4 bytes
Blue x: 4 bytes
Blue y: 4 bytes

Each value is encoded as a 4−byte unsigned integer, representing the x or y value times
100000.

If the cHRM chunk appears, it must precede the first IDAT chunk, and it must also precede
the PLTE chunk if present.

gAMA Gamma Correction
The gamma correction chunk specifies the gamma of the camera (or simulated camera)
that produced the image, and thus the gamma of the image with respect to the original
scene. Note that this is not the same as the gamma of the display device that will reproduce
the image correctly.

The chunk’s contents are:

Image gamma value: 4 bytes

A value of 100000 represents a gamma of 1.0, a value of 45000 a gamma of 0.45, and so on
(divide by 100000.0). Values around 1.0 and around 0.45 are common in practice.

If the encoder does not know the gamma value, it should not write a gamma chunk; the
absence of a gamma chunk indicates the gamma is unknown.

If the gAMA chunk appears, it must precede the first IDAT chunk, and it must also precede
the PLTE chunk if present.

See Gamma correction, Recommendations for Encoders: Encoder gamma handling, and
Recommendations for Decoders: Decoder gamma handling.

hIST Image Histogram
The histogram chunk gives the approximate usage frequency of each color in the color
palette. A histogram chunk may appear only when a palette chunk appears. If a viewer is
unable to provide all the colors listed in the palette, the histogram may help it decide how
to choose a subset of the colors for display.

This chunk’s contents are a series of 2−byte (16 bit) unsigned integers. There must be
exactly one entry for each entry in the PLTE chunk. Each entry is proportional to the
fraction of pixels in the image that have that palette index; the exact scale factor is chosen
by the encoder.

Histogram entries are approximate, with the exception that a zero entry specifies that the
corresponding palette entry is not used at all in the image. It is required that a histogram
entry be nonzero if there are any pixels of that color.

When the palette is a suggested quantization of a truecolor image, the histogram is
necessarily approximate, since a decoder may map pixels to palette entries differently than
the encoder did. In this situation, zero entries should not appear.

PNG Specification, Tenth Draft Page: 13

The hIST chunk, if it appears, must follow the PLTE chunk, and must precede the first
IDAT chunk.

See Rationale: Palette histograms, and Recommendations for Decoders: Palette histogram
usage.

pHYs Physical Pixel Dimensions
This chunk specifies the intended resolution for display of the image. The chunk’s contents
are:

4 bytes: pixels per unit, X axis (unsigned integer)
4 bytes: pixels per unit, Y axis (unsigned integer)
1 byte: unit specifier

The following values are legal for the unit specifier:

0: unit is unknown (pHYs defines pixel aspect ratio only)
1: unit is the meter

Conversion note: one inch is equal to exactly 0.0254 meters.

If this ancillary chunk is not present, pixels are assumed to be square, and the physical size
of each pixel is unknown.

If present, this chunk must precede the first IDAT chunk.

See Recommendations for Decoders: Pixel dimensions.

sBIT Significant Bits
To simplify decoders, PNG specifies that only certain bit depth values be used, and further
specifies that pixel values must be scaled to the full range of possible values at that bit
depth. However, the sBIT chunk is provided in order to store the original number of
significant bits, since this information may be of use to some decoders. We recommend
that an encoder emit an sBIT chunk if it has converted the data from a different bit
depth.

For color type 0 (grayscale), the sBIT chunk contains a single byte, indicating the number
of bits which were significant in the source data.

For color type 2 (RGB truecolor), the sBIT chunk contains three bytes, indicating the
number of bits which were significant in the source data for the red, green, and blue
channels, respectively.

For color type 3 (palette color), the sBIT chunk contains three bytes, indicating the
number of bits which were significant in the source data for the red, green, and blue
components of the palette entries, respectively.

For color type 4 (grayscale with alpha channel), the sBIT chunk contains two bytes,
indicating the number of bits which were significant in the source grayscale data and the
source alpha channel data, respectively.

For color type 6 (RGB truecolor with alpha channel), the sBIT chunk contains four bytes,
indicating the number of bits which were significant in the source data for the red, green,
blue and alpha channels, respectively.

Note that sBIT does not have any implications for the interpretation of the stored image:
the bit depth indicated by IHDR is the correct depth. sBIT is only an indication of the
history of the image. However, an sBIT chunk showing a bit depth less than the IHDR bit
depth does mean that not all possible color values occur in the image; this fact may be of

PNG Specification, Tenth Draft Page: 14

use to some decoders.

If the sBIT chunk appears, it must precede the first IDAT chunk, and it must also precede
the PLTE chunk if present.

tEXt Textual Data
Any textual information that the encoder wishes to record with the image is stored in
tEXt chunks. Each tEXt chunk contains a keyword and a text string, in the format:

Keyword: n bytes (character string)
Null separator: 1 byte
Text: n bytes (character string)

The keyword and text string are separated by a zero byte (null character). Neither the
keyword nor the text string may contain a null character. Note that the text string is not
null−terminated (the length of the chunk is sufficient information to locate the ending).
The keyword must be at least one character and less than 80 characters long. The text
string may be of any length from zero bytes up to the maximum permissible chunk size.

Any number of tEXt chunks may appear, and more than one with the same keyword is
permissible.

The keyword indicates the type of information represented by the text string. The
following keywords are predefined and should be used where appropriate:

Title Short (one line) title or caption for image
Author Name of image’s creator
Copyright Copyright notice
Description Description of image (possibly long)
Software Software used to create the image
Disclaimer Legal disclaimer
Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion from GIF comment

Other keywords, containing any sequence of printable characters in the character set, may
be invented for other purposes. Keywords of general interest may be registered with the
maintainers of the PNG specification.

Keywords must be spelled exactly as registered, so that decoders may use simple literal
comparisons when looking for particular keywords. In particular, keywords are considered
case−sensitive.

Both keyword and text are interpreted according to the ISO 8859−1 (Latin−1) character
set. Newlines in the text string should be represented by a single linefeed character
(decimal 10); use of other ASCII control characters is discouraged.

See Recommendations for Encoders: Text chunk processing and Recommendations for
Decoders: Text chunk processing.

tIME Image Last−Modification Time
This chunk gives the time of the last image modification (not the time of initial image
creation). The chunk contents are:

2 bytes: Year (complete; for example, 1995, not 95)
1 byte: Month (1−12)
1 byte: Day (1−31)
1 byte: Hour (0−23)
1 byte: Minute (0−59)
1 byte: Second (0−60) (yes, 60, for leap seconds; not 61, a common error)

Universal Time (UTC, also called GMT) should be specified rather than local time.

PNG Specification, Tenth Draft Page: 15

tRNS Transparency
Transparency is an alternative to the full alpha channel. Although transparency is not as
elegant as the full alpha channel, it requires less storage space and is sufficient for many
common cases.

For color type 3 (palette), this chunk’s contents are a series of alpha channel bytes,
corresponding to entries in the PLTE chunk:

Alpha for palette index 0: 1 byte
Alpha for palette index 1: 1 byte
etc.

Each entry indicates that pixels of that palette index should be treated as having the
specified alpha value. Alpha values have the same interpretation as in an 8−bit full alpha
channel: 0 is fully transparent, 255 is fully opaque, regardless of image bit depth. The tRNS
chunk may contain fewer alpha channel bytes than there are palette entries. In this case,
the alpha channel value for all remaining palette entries is assumed to be 255. In the
common case where only palette index 0 need be made transparent, only a one−byte tRNS
chunk is needed. The tRNS chunk may not contain more bytes than there are palette
entries.

For color type 0 (grayscale), the tRNS chunk contains a single gray level value, stored in
the format

gray: 2 bytes, range 0 .. (2^bitdepth) − 1

(For consistency, 2 bytes are used regardless of the image bit depth.) Pixels of the specified
gray level are to be treated as transparent (equivalent to alpha value 0); all other pixels are
to be treated as fully opaque (alpha value (2^bitdepth)−1).

For color type 2 (RGB), the tRNS chunk contains a single RGB color value, stored in the
format

red: 2 bytes, range 0 .. (2^bitdepth) − 1
green: 2 bytes, range 0 .. (2^bitdepth) − 1
blue: 2 bytes, range 0 .. (2^bitdepth) − 1

(For consistency, 2 bytes per sample are used regardless of the image bit depth.) Pixels of
the specified color value are to be treated as transparent (equivalent to alpha value 0); all
other pixels are to be treated as fully opaque (alpha value (2^bitdepth)−1).

tRNS is prohibited for color types 4 and 6, since a full alpha channel is already present in
those cases.

Note: when dealing with 16−bit grayscale or RGB data, it is important to compare both
bytes of the sample values to determine whether a pixel is transparent. Although decoders
may drop the low−order byte of the samples for display, this must not occur until after the
data has been tested for transparency. For example, if the grayscale level 0x0001 is
specified to be transparent, it would be incorrect to compare only the high−order byte and
decide that 0x0002 is also transparent.

When present, the tRNS chunk must precede the first IDAT chunk, and must follow the
PLTE chunk, if any.

zTXt Compressed Textual Data
A zTXt chunk contains textual data, just as tEXt does; however, zTXt takes advantage
of compression.

PNG Specification, Tenth Draft Page: 16

A zTXt chunk begins with an uncompressed Latin−1 keyword followed by a null (0)
character, just as in the tEXt chunk. The next byte after the null contains a compression
type byte, for which the only presently legitimate value is zero (deflate/inflate
compression). The compression−type byte is followed by a compressed data stream which
makes up the remainder of the chunk. Decompression of this data stream yields Latin−1
text which is equivalent to the text stored in a tEXt chunk.

Any number of zTXt and tEXt chunks may appear in the same file. See the preceding
definition of the tEXt chunk for the predefined keywords and the exact format of the
text.

See Deflate/Inflate Compression, Recommendations for Encoders: Text chunk processing,
and Recommendations for Decoders: Text chunk processing.

Summary of Standard Chunks

This table summarizes some properties of the standard chunk types.

Critical chunks (must appear in this order, except PLTE is optional):

 Name Multiple Ordering constraints
 OK?

 IHDR No Must be first
 PLTE No Before IDAT
 IDAT Yes Multiple IDATs must be consecutive
 IEND No Must be last

Ancillary chunks (need not appear in this order):

 Name Multiple Ordering constraints
 OK?

 cHRM No Before PLTE and IDAT
 gAMA No Before PLTE and IDAT
 sBIT No Before PLTE and IDAT
 bKGD No After PLTE; before IDAT
 hIST No After PLTE; before IDAT
 tRNS No After PLTE; before IDAT
 pHYs No Before IDAT
 tIME No None
 tEXt Yes None
 zTXt Yes None

Standard keywords for tEXt and zTXt chunks:

Title Short (one line) title or caption for image
Author Name of image’s creator
Copyright Copyright notice
Description Description of image (possibly long)
Software Software used to create the image
Disclaimer Legal disclaimer
Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion from GIF comment

Additional Chunk Types

Additional public PNG chunk types are defined in the document "PNG Special−Purpose Public
Chunks", available by FTP from ftp.uu.net:/graphics/png/ or via WWW from
http://sunsite.unc.edu/boutell/pngextensions.html.

Chunks described there are expected to be somewhat less widely supported than those defined in
this specification. However, application authors are encouraged to use those chunk types whenever
appropriate for their applications. Additional chunk types may be proposed for inclusion in that

PNG Specification, Tenth Draft Page: 17

list by contacting the PNG specification maintainers at png−info@uunet.uu.net.

Decoders must treat unrecognized chunk types as described under Chunk naming conventions.

5. Deflate/Inflate Compression

PNG compression type 0 (the only compression method presently defined for PNG) specifies
deflate/inflate compression with a 32K window. Deflate compression is an LZ77 derivative used in
zip, gzip, pkzip and related programs. Extensive research has been done supporting its patent−free
status. Portable C implementations are freely available.

Documentation and C code for deflate are available from the Info−Zip archives at
ftp.uu.net:/pub/archiving/zip/.

Deflate−compressed datastreams within PNG are stored in the "zlib" format, which has the
structure:

Compression method/flags code: 1 byte
Additional flags/check bits: 1 byte
Compressed data blocks: n bytes
Checksum: 4 bytes

Further details on this format may be found in the zlib specification. At this writing, the zlib
specification is at draft 3.1, and is available from
ftp.uu.net:/pub/archiving/zip/doc/zlib−3.1.doc.

For PNG compression type 0, the zlib compression method/flags code must specify method code 8
("deflate" compression) and an LZ77 window size of not more than 32K.

The checksum stored at the end of the zlib datastream is calculated on the uncompressed data
represented by the datastream. Note that the algorithm used is not the same as the CRC
calculation used for PNG chunk checksums. Verifying the chunk CRCs provides adequate
confidence that the PNG file has been transmitted undamaged. The zlib checksum is useful
mainly as a crosscheck that the deflate and inflate algorithms are implemented correctly.

The compressed data within the zlib datastream is stored as a series of blocks, each of which can
represent raw (uncompressed) data, LZ77−compressed data encoded with fixed Huffman codes,
or LZ77−compressed data encoded with custom Huffman codes. A marker bit in the final block
identifies it as the last block, allowing the decoder to recognize the end of the compressed
datastream. Further details on the compression algorithm and the encoding may be found in the
deflate specification. At this writing, the deflate specification is at draft 1.1, and is available from
ftp.uu.net:/pub/archiving/zip/doc/deflate−1.1.doc.

In a PNG file, the concatenation of the contents of all the IDAT chunks makes up a zlib
datastream as specified above. This datastream decompresses to filtered image data as described
elsewhere in this document.

It is important to emphasize that the boundaries between IDAT chunks are arbitrary and may fall
anywhere in the zlib datastream. There is not necessarily any correlation between IDAT chunk
boundaries and deflate block boundaries or any other feature of the zlib data. For example, it is
entirely possible for the terminating zlib checksum to be split across IDAT chunks.

In the same vein, there is no required correlation between the structure of the image data (i.e.,
scanline boundaries) and deflate block boundaries or IDAT chunk boundaries. The complete
image data is represented by a single zlib datastream that is stored in some number of IDAT
chunks; a decoder that assumes any more than this is incorrect. (Of course, a particular encoder
implementation may happen to emit files in which some of these structures are in fact related. But
decoders may not rely on this.)

PNG Specification, Tenth Draft Page: 18

PNG also uses zlib datastreams in zTXt chunks. In a zTXt chunk, the remainder of the chunk
following the compression type code byte is a zlib datastream as specified above. This datastream
decompresses to the user−readable text described by the chunk’s keyword. Unlike the image data,
such datastreams are not split across chunks; each zTXt chunk contains an independent zlib
datastream.

6. Filter Algorithms

This chapter describes the pixel filtering algorithms which may be applied in advance of
compression. The purpose of these filters is to prepare the image data for optimum compression.

PNG defines five basic filtering algorithms, which are given numeric codes as follows:

Code Name
0 None
1 Sub
2 Up
3 Average
4 Paeth

The encoder may choose which algorithm to apply on a scanline−by−scanline basis. In the image
data sent to the compression step, each scanline is preceded by a filter type byte containing the
numeric code of the filter algorithm used for that scanline.

Filtering algorithms are applied to bytes, not to pixels, regardless of the bit depth or color type of
the image. The filtering algorithms work on the byte sequence formed by a scanline that has been
represented as described under Image layout.

When the image is interlaced, each pass of the interlace pattern is treated as an independent
image for filtering purposes. The filters work on the byte sequences formed by the pixels actually
transmitted during a pass, and the "previous scanline" is the one previously transmitted in the
same pass, not the one adjacent in the complete image. Note that the subimage transmitted in any
one pass is always rectangular, but is of smaller width and/or height than the complete image.
Filtering is not applied when this subimage is empty.

For all filters, the bytes "to the left of" the first pixel in a scanline must be treated as being zero.
For filters that refer to the prior scanline, the entire prior scanline must be treated as being zeroes
for the first scanline of an image (or of a pass of an interlaced image).

To reverse the effect of a filter, the decoder must use the decoded values of the prior pixel on the
same line, the pixel immediately above the current pixel on the prior line, and the pixel just to the
left of the pixel above. This implies that at least one scanline’s worth of image data must be stored
by the decoder at all times. Even though some filter types do not refer to the prior scanline, the
decoder must always store each scanline as it is decoded, since the next scanline might use a filter
that refers to it.

PNG imposes no restriction on which filter types may be applied to an image. However, the filters
are not equally effective on all types of data. See Recommendations for Encoders: Filter selection.

See also Rationale: Filtering.

Filter type 0: None

With the None filter, the scanline is transmitted unmodified; it is only necessary to insert a filter
type byte before the data.

Filter type 1: Sub

PNG Specification, Tenth Draft Page: 19

The Sub filter transmits the difference between each byte and the value of the corresponding byte
of the prior pixel.

To compute the Sub filter, apply the following formula to each byte of each scanline:

 Sub(x) = Raw(x) − Raw(x−bpp)

where x ranges from zero to the number of bytes representing that scanline minus one, Raw(x)
refers to the raw data byte at that byte position in the scanline, and bpp is defined as the number
of bytes per complete pixel, rounding up to one. For example, for color type 2 with a bit depth of
16, bpp is equal to 6 (three channels, two bytes per channel); for color type 0 with a bit depth of 2,
bpp is equal to 1 (rounding up); for color type 4 with a bit depth of 16, bpp is equal to 4 (two−byte
grayscale value, plus two−byte alpha channel).

Note this computation is done for each byte, regardless of bit depth. In a 16−bit image, MSBs are
differenced from the preceding MSB and LSBs are differenced from the preceding LSB, because
of the way that bpp is defined.

Unsigned arithmetic modulo 256 is used, so that both the inputs and outputs fit into bytes. The
sequence of Sub values is transmitted as the filtered scanline.

For all x < 0, assume Raw(x) = 0.

To reverse the effect of the Sub filter after decompression, output the following value:

 Sub(x) + Raw(x−bpp)

(computed mod 256), where Raw refers to the bytes already decoded.

Filter type 2: Up

The Up filter is just like the Sub filter except that the pixel immediately above the current pixel,
rather than just to its left, is used as the predictor.

To compute the Up filter, apply the following formula to each byte of each scanline:

 Up(x) = Raw(x) − Prior(x)

where x ranges from zero to the number of bytes representing that scanline minus one, Raw(x)
refers to the raw data byte at that byte position in the scanline, and Prior(x) refers to the
unfiltered bytes of the prior scanline.

Note this is done for each byte, regardless of bit depth. Unsigned arithmetic modulo 256 is used, so
that both the inputs and outputs fit into bytes. The sequence of Up values is transmitted as the
filtered scanline.

On the first scanline of an image (or of a pass of an interlaced image), assume Prior(x) = 0 for all
x.

To reverse the effect of the Up filter after decompression, output the following value:

 Up(x) + Prior(x)

(computed mod 256), where Prior refers to the decoded bytes of the prior scanline.

Filter type 3: Average

The Average filter uses the average of the two neighboring pixels (left and above) to predict the
value of a pixel.

PNG Specification, Tenth Draft Page: 20

To compute the Average filter, apply the following formula to each byte of each scanline:

 Average(x) = Raw(x) − floor((Raw(x−bpp)+Prior(x))/2)

where x ranges from zero to the number of bytes representing that scanline minus one, Raw(x)
refers to the raw data byte at that byte position in the scanline, Prior(x) refers to the unfiltered
bytes of the prior scanline, and bpp is defined as for the Sub filter.

Note this is done for each byte, regardless of bit depth. The sequence of Average values is
transmitted as the filtered scanline.

The subtraction of the predicted value from the raw byte must be done modulo 256, so that both
the inputs and outputs fit into bytes. However, the sum Raw(x−bpp)+Prior(x) must be
formed without overflow (using at least nine−bit arithmetic). floor() indicates that the result
of the division is rounded to the next lower integer if fractional; in other words, it is an integer
division or right shift operation.

For all x < 0, assume Raw(x) = 0. On the first scanline of an image (or of a pass of an interlaced
image), assume Prior(x) = 0 for all x.

To reverse the effect of the Average filter after decompression, output the following value:

 Average(x) + floor((Raw(x−bpp)+Prior(x))/2)

where the result is computed mod 256, but the prediction is calculated in the same way as for
encoding. Raw refers to the bytes already decoded, and Prior refers to the decoded bytes of the
prior scanline.

Filter type 4: Paeth

The Paeth filter computes a simple linear function of the three neighboring pixels (left, above,
upper left), then chooses as predictor the neighboring pixel closest to the computed value. This
technique is taken from Alan W. Paeth’s article "Image File Compression Made Easy" in
Graphics Gems II, James Arvo, editor, Academic Press, 1991.

To compute the Paeth filter, apply the following formula to each byte of each scanline:

 Paeth(x) = Raw(x) − PaethPredictor(Raw(x−bpp),Prior(x),Prior(x−bpp))

where x ranges from zero to the number of bytes representing that scanline minus one, Raw(x)
refers to the raw data byte at that byte position in the scanline, Prior(x) refers to the unfiltered
bytes of the prior scanline, and bpp is defined as for the Sub filter.

Note this is done for each byte, regardless of bit depth. Unsigned arithmetic modulo 256 is used, so
that both the inputs and outputs fit into bytes. The sequence of Paeth values is transmitted as the
filtered scanline.

The PaethPredictor function is defined by the following pseudocode:

 function PaethPredictor (a, b, c)
 begin
 ; a = left, b = above, c = upper left
 p := a + b − c ; initial estimate
 pa := abs(p − a) ; distances to a, b, c
 pb := abs(p − b)
 pc := abs(p − c)
 ; return nearest of a,b,c,
 ; breaking ties in order a,b,c.
 if pa <= pb AND pa <= pc
 begin

PNG Specification, Tenth Draft Page: 21

 return a
 end
 if pb <= pc
 begin
 return b
 end
 return c
 end

The calculations within the PaethPredictor function must be performed exactly, without overflow.
Arithmetic modulo 256 is to be used only for the final step of subtracting the function result from
the target pixel value.

Note that the order in which ties are broken is fixed and must not be altered. The tie break
order is: pixel to the left, pixel above, pixel to the upper left. (This order differs from that given in
Paeth’s article.)

For all x < 0, assume Raw(x) = 0 and Prior(x) = 0. On the first scanline of an image (or of a pass of
an interlaced image), assume Prior(x) = 0 for all x.

To reverse the effect of the Paeth filter after decompression, output the following value:

 Paeth(x) + PaethPredictor(Raw(x−bpp),Prior(x),Prior(x−bpp))

(computed mod 256), where Raw and Prior refer to bytes already decoded. Exactly the same
PaethPredictor function is used by both encoder and decoder.

7. Chunk Ordering Rules

To allow new chunk types to be added to PNG, it is necessary to establish rules about the ordering
requirements for all chunk types. Otherwise a PNG editing program cannot know what to do
when it encounters an unknown chunk.

We define a "PNG editor" as a program that modifies a PNG file, but wishes to preserve as much
as possible of the ancillary information in the file. Examples of PNG editors are a program that
adds or modifies text chunks, and a program that adds a suggested palette to a 24−bit RGB PNG
file. Ordinary image editors are not PNG editors in this sense, because they usually discard any
unrecognized information while reading in an image. (Note: we strongly encourage programs
handling PNG files to preserve ancillary information whenever possible.)

As an example of possible problems, consider a hypothetical new ancillary chunk type that is
safe−to−copy and is required to appear after PLTE if PLTE is present (presumably PLTE affects
the meaning of the chunk in some way). If our program to add a suggested PLTE to a file does not
recognize this new chunk, it may insert PLTE in the wrong place, namely after the new chunk. We
could prevent such problems by requiring PNG editors to discard any unknown chunks, but that is
a very unattractive solution.

To prevent this type of problem while allowing for future extension, we put some constraints on
both the behavior of PNG editors and the allowed ordering requirements for chunks. The rules for
PNG editors are:

1. When copying an unknown unsafe−to−copy ancillary chunk, a PNG editor may not move
the chunk relative to any critical chunk. It may relocate the chunk freely relative to other
ancillary chunks that occur between the same pair of critical chunks. (This is well defined
since the editor may not add, delete, or reorder critical chunks if it is preserving
unsafe−to−copy chunks.)

2. When copying an unknown safe−to−copy ancillary chunk, a PNG editor may not move
the chunk from before IDAT to after IDAT or vice versa. (This is well defined because
IDAT is always present.) Any other reordering is permitted.

PNG Specification, Tenth Draft Page: 22

3. When copying a known chunk type, an editor need only honor the specific chunk ordering
rules that exist for that chunk type. However, it may always choose to apply the above
general rules instead.

Therefore, the actual ordering rules for any ancillary chunk type cannot be any stricter than this:

Unsafe−to−copy chunks may have ordering requirements relative to critical chunks.
Safe−to−copy chunks may have ordering requirements relative to IDAT.

Note that critical chunks can have arbitrary ordering requirements, because PNG editors are
required to give up if they encounter unknown critical chunks. A PNG editor must always know
the ordering rules for any critical chunk type that it deals with. For example, IHDR has the special
ordering rule that it must always appear first.

Decoders may not assume more about the positioning of any ancillary chunk than is
specified by the chunk ordering rules. In particular, it is never valid to assume that a specific
ancillary chunk type occurs with any particular positioning relative to other ancillary chunks.
(For example, it is unsafe to assume that your private ancillary chunk occurs immediately before
IEND. Even if your application always writes it there, a PNG editor might have inserted some
other ancillary chunk in between. But you can safely assume that your chunk will remain
somewhere between IDAT and IEND.)

See also Chunk naming conventions.

8. Multi−Image Extension

PNG itself is strictly a single−image format. However, it may be necessary to store multiple images
within one file; for example, this is needed to convert some GIF files. For this purpose, a
multi−image format will be defined in the near future. PNG decoders will not be required to
support the multi−image extension.

9. Recommendations for Encoders

This chapter gives some recommendations for encoder behavior. The only absolute requirement
on a PNG encoder is that it produce files which conform to the format specified in the preceding
chapters. However, best results will usually be achieved by following these recommendations.

Bitdepth scaling

When scaling input values that have a bit depth that cannot be directly represented in PNG, an
excellent approximation to the correct value can be achieved by shifting the valid bits to begin in
the most significant bit and repeating the most significant bits into the open bits.

For example, if 5 bits per channel are available in the source data, conversion to a bitdepth of 8
can be achieved as follows:

If the value for a sample in the source data is 27 (in a range from 0−31), then the original bits are:

4 3 2 1 0
−−−−−−−−−
1 1 0 1 1

Converted to a bitdepth of 8, the best value is 222:

7 6 5 4 3 2 1 0
−−−−−−−−−−−−−−−−
1 1 0 1 1 1 1 0
|=======| |===|
 | Leftmost Bits Repeated to Fill Open Bits
 |

PNG Specification, Tenth Draft Page: 23

Original Bits

Note that this scaling can be reversed simply by shifting right.

Scaling by simply shifting left by three bits is incorrect, since the resulting data would have a range
less than the desired full range. (For 5−bit input data, the maximum output would be 248 =
11111000, which is not full brightness.)

It is recommended that the sBIT chunk be included when bitdepth scaling has been performed, to
record the original data depth.

Encoder gamma handling

If it is possible for the encoder to determine the image gamma, or to make a strong guess based on
the hardware on which it runs, then the encoder is strongly encouraged to output the gAMA chunk.

A linear brightness level, expressed as a floating−point value in the range 0 to 1, may be converted
to a gamma−corrected pixel value by

 gbright := bright ^ gamma
 pixelval := ROUND(gbright * MAXPIXVAL)

Computer graphics renderers often do not perform gamma encoding, instead making pixel values
directly proportional to scene brightness. This "linear" pixel encoding is equivalent to gamma
encoding with a gamma of 1.0, so graphics programs that produce linear pixels should always put
out a gAMA chunk specifying a gamma of 1.0.

If the encoder knows that the image has been displayed satisfactorily on a display of gamma
display_gamma, then the image can be marked as having gamma 1.0/display_gamma.

It is not recommended that encoders attempt to convert supplied images to a different gamma.
Store the data in the file without conversion, and record the source gamma. Gamma conversion
at encode time is a bad idea because gamma adjustment of digital pixel data is inherently lossy,
due to roundoff error (8 or so bits is not really enough accuracy). Thus encode−time conversion
permanently degrades the image. Worse, if the eventual decoder wants the data with some other
gamma, then two conversions occur, each introducing roundoff error. Better to store the data
losslessly and incur at most one conversion when the image is finally displayed.

Gamma does not apply to alpha channel values; alpha is always represented linearly.

See Recommendations for Decoders: Decoder gamma handling for more details.

Alpha channel creation

The alpha channel may be regarded either as a mask that temporarily hides transparent parts of
the image, or as a means for constructing a non−rectangular image. In the first case, the color
values of fully transparent pixels should be preserved for future use. In the second case, the
transparent pixels carry no useful data and are simply there to fill out the rectangular image area
required by PNG. In this case, fully transparent pixels should all be assigned the same color value
for best compression.

Encoders should keep in mind the possibility that a viewer will ignore transparency control.
Hence, the colors assigned to transparent pixels should be reasonable background colors whenever
feasible.

For applications that do not require a full alpha channel, or cannot afford the price in
compression efficiency, the tRNS transparency chunk is also available.

PNG Specification, Tenth Draft Page: 24

If the image has a known background color, this color should be written in the bKGD chunk. Even
viewers that ignore transparency may use the bKGD color to fill unused screen area.

If the original image has premultiplied (also called "associated") alpha data, convert it to PNG’s
non−premultiplied format by dividing each RGB value by the corresponding alpha value, then
multiplying by the maximum value for the image bit depth. In valid premultiplied data, the RGB
values never exceed their corresponding alpha values, so the result of the division should always be
in the range 0 to 1. If the alpha value is zero, output black (zeroes).

Filter selection

For images of color type 3 (palette−based color), filter type 0 (none) is usually the most effective.

Filter type 0 is also recommended for images of bit depths less than 8. For low−bit−depth
grayscale images, it may be a net win to expand the image to 8−bit representation and apply
filtering, but this is rare.

For truecolor and grayscale images, any of the five filters may prove the most effective. If an
encoder wishes to use a fixed filter choice, the Paeth filter is most likely to be the best.

For best compression of truecolor and grayscale images, we recommend an adaptive filtering
approach in which a filter is chosen for each scanline. The following simple heuristic has
performed well in early tests: compute the output scanline using all five filters, and select the filter
which gives the smallest sum of absolute values of outputs. (Consider the output bytes as signed
differences for this test.) This method usually outperforms any single fixed filter choice. However,
it is likely that much better heuristics will be found as more experience is gained with PNG.

Filtering according to these recommendations is effective on interlaced as well as noninterlaced
images.

Text chunk processing

Note that a nonempty keyword must be provided for each text chunk. The generic keyword
"Comment" may be used if no better description of the text is available.

Encoders should discourage the creation of single lines of text longer than 79 characters, in order
to facilitate easy reading.

If an encoder chooses to support output of zTXt compressed text chunks, it is recommended that
text less than 1K (1024 bytes) in size be output using uncompressed tEXt chunks. In particular, it
is recommended that the basic title and author keywords always be output using uncompressed
tEXt chunks. Lengthy disclaimers, on the other hand, are an ideal candidate for zTXt.

Placing large tEXt and zTXt chunks after the image data (after IDAT) may speed up image
display in some situations, since the decoder won’t have to read over the text to get to the image
data. But it is recommended that small text chunks, such as the image title, appear before IDAT.

Registering proprietary chunks

If you want others outside your organization to understand a chunk type that you invent, contact
the maintainers of the PNG specification to submit a proposed chunk name and definition for
addition to the list of special−purpose public chunks (see Additional Chunk Types).

New public chunks will be only be registered if they are of use to others and do not violate the
design philosophy of PNG. Chunk registration is not automatic, although it is the intent of the
authors that it be straightforward when a new chunk of potentially wide application is needed.
Note that the creation of new critical chunk types is discouraged unless absolutely necessary.

PNG Specification, Tenth Draft Page: 25

If you do not desire that others outside your organization understand the chunk type, you may use
a private chunk name by specifying a lowercase letter for the second character. Such chunk types
need not be registered. But note that others may use the same private chunk name, so it is prudent
to store additional identifying information at the beginning of the chunk data.

Please note that if you want to use a private chunk for information that is not essential to view the
image, and have any desire whatsoever that others not using your own viewer software be able to
view the image, you should use an ancillary chunk type (first character is lowercase) rather than a
critical chunk type (first character uppercase).

If an ancillary chunk is to contain textual information that might be of interest to a human user,
it is recommended that a special chunk type not be used. Instead use a tEXt chunk and define a
suitable keyword. In this way, the information will be available to users not using your software.

If of general usefulness, new keywords for tEXt chunks may be registered with the maintainers of
the PNG specification. Keywords should be chosen to be reasonably self−explanatory, since the
idea is to let other users figure out what the chunk contains.

10. Recommendations for Decoders

This chapter gives some recommendations for decoder behavior. The only absolute requirement
on a PNG decoder is that it successfully read any file conforming to the format specified in the
preceding chapters. However, best results will usually be achieved by following these
recommendations.

Chunk error checking

Unknown chunk types must be handled as described under Chunk naming conventions.

It is strongly recommended that decoders verify the CRC on each chunk.

For known−length chunks such as IHDR, decoders should treat an unexpected chunk length as an
error. Future extensions to this specification will not add new fields to existing chunks; instead,
new chunk types will be added to carry any new information.

Unexpected values in fields of known chunks (for example, an unexpected compression type in the
IHDR chunk) should be checked for and treated as errors.

Pixel dimensions

Non−square pixels can be represented (see the pHYs chunk), but viewers are not required to
account for them; a viewer may present any PNG file as though its pixels are square.

Conversely, viewers running on display hardware with non−square pixels are strongly encouraged
to rescale images for proper display.

Truecolor image handling

To achieve PNG’s goal of universal interchangeability, decoders are required to accept all types of
PNG image: palette, truecolor, and grayscale. Viewers running on palette−mapped display
hardware need to be able to reduce truecolor images to palette form for viewing. This process is
usually called "color quantization".

A simple, fast way of doing this is to reduce the image to a fixed palette. Palettes with uniform
color spacing ("color cubes") are usually used to minimize the per−pixel computation. For
photograph−like images, dithering is recommended to avoid ugly contours in what should be
smooth gradients; however, dithering introduces graininess which may be objectionable.

PNG Specification, Tenth Draft Page: 26

The quality of rendering can be improved substantially by using a palette chosen specifically for
the image, since a color cube usually has numerous entries that are unused in any particular
image. This approach requires more work, first in choosing the palette, and second in mapping
individual pixels to the closest available color. PNG allows the encoder to supply a suggested
palette in a PLTE chunk, but not all encoders will do so, and the suggested palette may be
unsuitable in any case (it may have too many or too few colors). High−quality viewers will
therefore need to have a palette selection routine at hand. A large lookup table is usually the most
feasible way of mapping individual pixels to palette entries with adequate speed.

Numerous implementations of color quantization are available. The PNG reference
implementation will include code for the purpose.

Decoder gamma handling

To produce correct tone reproduction, a good image display program must take into account the
gammas of both the image file and the display device. This can be done by calculating

 gbright := pixelval / MAXPIXVAL
 bright := gbright ^ (1.0 / file_gamma)
 gcvideo := bright ^ (1.0 / display_gamma)
 fbval := ROUND(gcvideo * MAXFBVAL)

where MAXPIXVAL is the maximum pixel value in the file (255 for 8−bit, 65535 for 16−bit, etc),
MAXFBVAL is the maximum value of a frame buffer pixel (255 for 8−bit, 31 for 5−bit, etc),
pixelval is the value of the pixel in the PNG file, and fbval is the value to write into the
frame buffer. The first line converts from pixel code into a normalized 0 to 1 floating point value,
the second undoes the encoding of the image file to produce a linear brightness value, the third
line pre−corrects for the monitor’s gamma response, and the fourth converts to an integer frame
buffer pixel. In practice the second and third lines can be merged into

 gcvideo := gbright ^ (1.0 / (file_gamma * display_gamma))

so as to perform only one power calculation. For color images, the entire calculation is performed
separately for R, G, and B values.

It is not necessary to perform transcendental math for every pixel! Instead, compute a lookup table
that gives the correct output value for every pixel value. This requires only 256 calculations per
image (for 8−bit accuracy), not one calculation per pixel. For palette−based images, a one−time
correction of the palette is sufficient.

In some cases even computing a gamma lookup table may be a concern. In these cases, viewers are
encouraged to have precomputed gamma correction tables for file_gamma values of 1.0 and 0.45
and some reasonable single display_gamma value, and to use the table closest to the gamma
indicated in the file. This will produce acceptable results for the majority of real files.

When the incoming image has unknown gamma (no gAMA chunk), choose a likely default
file_gamma value, but allow the user to select a new one if the result proves too dark or too light.

In practice, it is often difficult to determine what value of display_gamma should be used. In
systems with no built−in gamma correction, the display_gamma is determined entirely by the
CRT. Assuming a value of 2.2 is recommended, unless you have detailed calibration
measurements of this particular CRT available.

However, many modern frame buffers have lookup tables that are used to perform gamma
correction, and on these systems the display_gamma value should be the gamma of the lookup
table and CRT combined. You may not be able to find out what the lookup table contains from
within an image viewer application, so you may have to ask the user what the system’s gamma
value is. Unfortunately, different manufacturers use different ways of specifying what should go

PNG Specification, Tenth Draft Page: 27

into the lookup table, so interpretation of the system gamma value is system−dependent.

Here are examples of how to deal with some known systems:

On many Macintosh systems, there is a "gamma" control panel that lets you select one of a
small set of gamma values (1.0, 1.4, 1.8, 2.2). These numbers are the combined gamma of
the hardware table and the CRT, and so they are exactly the value that the decoder needs
to use as display_gamma. With the "gamma" control panel turned off, or not present at all,
the default Macintosh system gamma is 1.8.
On recent SGI systems, there is a hardware gamma−correction table whose contents are
controlled by the (privileged) "gamma" program. The gamma of the table is actually the
reciprocal of the number that "gamma" prints, and does not include the CRT gamma. To
obtain the display_gamma, you need to find the SGI system gamma (either by looking in a
file, or asking the user) and then calculating

 display_gamma = 2.2 / SGI_system_gamma

You will find SGI systems with the system gamma set to 1.0 and 2.2 (or higher), but the
default when machines are shipped is 1.7.
On frame buffers that have hardware gamma correction tables, and which are calibrated
to display linear pixels correctly, display_gamma is 1.0.
Many workstations and Xterms and PC displays lack gamma correction hardware. Here,
assume that display_gamma is 2.2.

We should point out that there is a fudge factor built into the use of the magic value "2.2" as the
assumed CRT gamma in the calculations above. Real CRTs usually have a higher gamma than
this, around 2.8 in fact. By doing the display gamma correction for a CRT gamma of only 2.2, we
get an image on screen that is slightly higher in contrast than the original scene. This is normal
TV and film practice, and we are continuing it here. Generally, writers of display programs are
best to assume that CRT gamma is 2.2 rather than using actual measurements.

If you have carefully measured the gamma of your CRT, you might want to set display_gamma to
your_CRT_gamma/1.25, in order to preserve this intentional contrast boost.

Finally, note that the response of real displays is actually more complex than can be described by a
single number (display_gamma). If actual measurements of the monitor’s light output as a
function of voltage input are available, the third and fourth lines of the computation above may
be replaced by a lookup in these measurements, to find the actual frame buffer value that most
nearly gives the desired brightness.

Background color

Viewers which have a specific background against which to present the image will ignore the
bKGD chunk, but viewers with no preset background color may choose to honor it. The
background color will typically be used to fill unused screen space around the image, as well as any
transparent pixels within the image. (Thus, bKGD is valid and useful even when the image does
not use transparency.) If no bKGD chunk is present, the viewer must make its own decision about a
suitable background color.

Alpha channel processing

In the most general case, the alpha channel can be used to composite a foreground image against a
background image; the PNG file defines the foreground image and the transparency mask, but not
the background image. Decoders are not required to support this most general case. It is expected
that most will be able to support compositing against a single background color, however.

The equation for computing a composited pixel value is

PNG Specification, Tenth Draft Page: 28

 output := alpha * foreground + (1−alpha) * background

where alpha and the input and output sample values are expressed as fractions in the range 0 to 1.
This computation should be performed with linear (non−gamma−corrected) sample values. For
color images, the computation is done separately for R, G, and B samples.

The following code illustrates the general case of compositing a foreground image over a
background image. It assumes that you have the original pixel data available for the background
image, and that output is to a frame buffer for display. Other variants are possible; see the
comments below the code. The code allows the bit depths and gamma values of foreground image,
background image, and frame buffer/CRT to all be different. Don’t assume they are the same
without checking!

There are line numbers for referencing code in the comments below. Other than that, this is
standard C.

01 int foreground[4]; /* file pixel: R, G, B, A */
02 int background[3]; /* file background color: R, G, B */
03 int fbpix[3]; /* frame buffer pixel */
04 int fg_maxpixval; /* foreground max pixel */
05 int bg_maxpixval; /* background max pixel */
06 int fb_maxpixval; /* frame buffer max pixel */
07 int ialpha;
08 float alpha, compalpha;
09 float gamfg, linfg, gambg, linbg, comppix, gcvideo;

 /* Get max pixel value in files and frame buffer */
10 fg_maxpixval = (1 << fg_bit_depth) − 1;
11 bg_maxpixval = (1 << bg_bit_depth) − 1;
12 fb_maxpixval = (1 << frame_buffer_bit_depth) − 1;
 /*
 * Get integer version of alpha.
 * Check for opaque and transparent special cases;
 * no compositing needed if so.
 *
 * We show the whole gamma decode/correct process in
 * floating point, but it would more likely be done
 * with lookup tables.
 */
13 ialpha = foreground[3];
14 if (ialpha == 0) {
 /*
 * Foreground image is transparent here.
 * If the background image is already in the frame
 * buffer, there is nothing to do.
 */
15 ;
16 } else if (ialpha == fg_maxpixval) {
17 for (i = 0; i < 3; i++ {
18 gamfg = (float) foreground[i] / fg_maxpixval;
19 linfg = pow(gamfg, 1.0/fg_gamma);
20 comppix = linfg;
21 gcvideo = pow(comppix, 1.0/display_gamma);
22 fbpix[i] = (int) (gcvideo * fb_maxpixval + 0.5);
23 }
24 } else {
 /*
 * Compositing is necessary.
 * Get floating−point alpha and its complement.
 * Note: alpha is always linear; gamma does not
 * affect it.
 */
25 alpha = (float) ialpha / fg_maxpixval;
26 compalpha = 1.0 − alpha;

27 for (i = 0; i < 3; i++ {
 /*
 * Convert foreground and background to floating point,

PNG Specification, Tenth Draft Page: 29

 * then linearize (undo gamma encoding).
 */
28 gamfg = (float) foreground[i] / fg_maxpixval;
29 linfg = pow(gamfg, 1.0/fg_gamma);
30 gambg = (float) background[i] / bg_maxpixval;
31 linbg = pow(gambg, 1.0/bg_gamma);
 /*
 * Composite.
 */
32 comppix = linfg * alpha + linbg * compalpha;
 /*
 * Gamma correct for display.
 * Convert to integer frame buffer pixel.
 */
33 gcvideo = pow(comppix, 1.0/display_gamma);
34 fbpix[i] = (int) (gcvideo * fb_maxpixval + 0.5);
35 }
36 }

Variations:

1. If output is to another PNG image file instead of a frame buffer, lines 21, 22, 33, and 34
should be changed to be something like:

 /*
 * Gamma encode for storage in output file.
 * Convert to integer pixel value.
 */
 gamout = pow(comppix, outfile_gamma);
 outpix[i] = (int) (gamout * out_maxpixval + 0.5);

Also, it becomes necessary to process background pixels when alpha is zero, rather than
just skipping pixels. Thus, line 15 must be replaced by copies of lines 18−22, but processing
background instead of foreground pixel values.

2. If the bit depth of the output file, foreground file, and background file are all the same, and
the three gamma values also match, then the no−compositing code in lines 14−23 reduces
to nothing more than copying pixel values from the input file to the output file if alpha is
one, or copying pixel values from background to output file if alpha is zero. Since alpha is
typically either zero or one for the vast majority of pixels in an image, this is a great
savings. No gamma computations are needed for most pixels.

3. When the bit depths and gamma values all match, it may appear attractive to skip the
gamma decorrection and correction (lines 28−31, 33−34) and just perform line 32 using
gamma−encoded sample values. Although this doesn’t hurt image quality too badly, the
time savings are small if alpha values of zero and one are special−cased as recommended
here.

4. If the original pixel values of the background image are no longer available, only processed
frame buffer pixels left by display of the background image, then lines 30 and 31 must
extract intensity from the frame buffer pixel values using code like:

 /*
 * Decode frame buffer value back into linear space.
 */
 gcvideo = (float) (fbpix[i] / fb_maxpixval);
 linbg = pow(gcvideo, display_gamma);

However, some roundoff error can result, so it is better to have the original background
pixels available if at all possible.

5. Note that lines 18−22 are performing exactly the same gamma computation that is done
when no alpha channel is present. So, if you handle the no−alpha case with a lookup table,
you can use the same lookup table here. Lines 28−31 and 33−34 can also be done with
lookup tables.

6. Of course, everything here can be done in integer arithmetic. Just be careful to maintain
sufficient precision all the way through.

PNG Specification, Tenth Draft Page: 30

Note: in floating point, no overflow or underflow checks are needed, because the input pixel values
are guaranteed to be between 0 and 1, and compositing always yields a result that is in between the
input values (inclusive). With integer arithmetic, some roundoff−error analysis might be needed
to guarantee no overflow or underflow.

When displaying a PNG image with full alpha channel, it is important to be able to composite the
image against some background, even if it’s only black. Ignoring the alpha channel will cause PNG
images that have been converted from an associated−alpha representation to look wrong. (Of
course, if the alpha channel is a separate transparency mask, then ignoring alpha is a useful
option: it allows the hidden parts of the image to be recovered.)

When dealing with PNG images that have a tRNS chunk, it is reasonable to assume that the
transparency information is a mask rather than associated−alpha coverage data. In this case, it is
an acceptable shortcut to interpret all nonzero alpha values as fully opaque (no background). This
approach is simple to implement: transparent pixels are replaced by the background color, others
are unchanged. A viewer with no particular background color preference may even choose to
ignore the tRNS chunk; but if a bKGD chunk is provided, it is better to use the specified
background color.

Progressive display

When receiving images over slow transmission links, decoders can improve perceived
performance by displaying interlaced images progressively. This means that as each pass is
received, an approximation to the complete image is displayed based on the data received so far.
One simple yet pleasing effect can be obtained by expanding each received pixel to fill a rectangle
covering the yet−to−be−transmitted pixel positions below and to the right of the received pixel.
This process can be described by the following pseudocode:

Starting_Row [1..7] = { 0, 0, 4, 0, 2, 0, 1 }
Starting_Col [1..7] = { 0, 4, 0, 2, 0, 1, 0 }
Row_Increment [1..7] = { 8, 8, 8, 4, 4, 2, 2 }
Col_Increment [1..7] = { 8, 8, 4, 4, 2, 2, 1 }
Block_Height [1..7] = { 8, 8, 4, 4, 2, 2, 1 }
Block_Width [1..7] = { 8, 4, 4, 2, 2, 1, 1 }

pass := 1
while pass <= 7
begin
 row := Starting_Row[pass]

 while row < height
 begin
 col := Starting_Col[pass]

 while col < width
 begin
 visit (row, col,
 min (Block_Height[pass], height − row),
 min (Block_Width[pass], width − col))
 col := col + Col_Increment[pass]
 end
 row := row + Row_Increment[pass]
 end

 pass := pass + 1
end

Here, the function "visit(row,column,height,width)" obtains the next transmitted pixel and paints
a rectangle of the specified height and width, whose upper−left corner is at the specified row and
column, using the color indicated by the pixel. Note that row and column are measured from 0,0
at the upper left corner.

PNG Specification, Tenth Draft Page: 31

If the decoder is merging the received image with a background image, it may be more convenient
just to paint the received pixel positions; that is, the "visit()" function sets only the pixel at the
specified row and column, not the whole rectangle. This produces a "fade−in" effect as the new
image gradually replaces the old. An advantage of this approach is that proper alpha or
transparency processing can be done as each pixel is replaced. Painting a rectangle as described
above will overwrite background−image pixels that may be needed later, if the pixels eventually
received for those positions turn out to be wholly or partially transparent. Of course, this is only a
problem if the background image is not stored anywhere offscreen.

Palette histogram usage

If the viewer is only short a few colors, it is usually adequate to drop the least−used colors from the
palette. To reduce the number of colors substantially, it’s best to choose entirely new
representative colors, rather than trying to use a subset of the existing palette. This amounts to
performing a new color quantization step; however, the existing palette and histogram can be used
as the input data, thus avoiding a scan of the image data.

If no histogram chunk is provided, a decoder can of course develop its own, at the cost of an extra
pass over the image data.

Text chunk processing

If practical, decoders should have a way to display to the user all tEXt and zTXt chunks found in
the file. Even if the decoder does not recognize a particular text keyword, the user may well be
able to understand it.

Decoders should be prepared to display text chunks which contain any number of printing
characters between newline characters, even though encoders are encouraged to avoid creating
lines in excess of 79 characters.

11. Appendix: Rationale

(This appendix is not part of the formal PNG specification.)

This appendix gives the reasoning behind some of the design decisions in PNG. Many of these
decisions were the subject of considerable debate. The authors freely admit that another group
might have made different decisions; however, we believe that our choices are defensible and
consistent.

Why a new file format?

Does the world really need yet another graphics format? We believe so. GIF is no longer freely
usable, but no other commonly used format can directly replace it, as is discussed in more detail
below. We might have used an adaptation of an existing format, for example GIF with an
unpatented compression scheme. But this would require new code anyway; it would not be all that
much easier to implement than a whole new file format. (PNG is designed to be simple to
implement, with the exception of the compression engine, which would be needed in any case.)
We feel that this is an excellent opportunity to design a new format that fixes some of the known
limitations of GIF.

Why these features?

The features chosen for PNG are intended to address the needs of applications that previously
used the special strengths of GIF. In particular, GIF is well adapted for on−line communications
because of its streamability and progressive display capability. PNG shares those attributes.

We have also addressed some of the widely known shortcomings of GIF. In particular, PNG

PNG Specification, Tenth Draft Page: 32

supports truecolor images. We know of no widely used image format that losslessly compresses
truecolor images as effectively as PNG does. We hope that PNG will make use of truecolor images
more practical and widespread.

Some form of transparency control is desirable for applications in which images are displayed
against a background or together with other images. GIF provided a simple transparent−color
specification for this purpose. PNG supports a full alpha channel as well as transparent−color
specifications. This allows both highly flexible transparency and compression efficiency.

Robustness against transmission errors has been an important consideration. For example, images
transferred across Internet are often mistakenly processed as text, leading to file corruption. PNG
is designed so that such errors can be detected quickly and reliably.

PNG has been expressly designed not to be completely dependent on a single compression
technique. Although inflate/deflate compression is mentioned in this document, PNG would still
exist without it.

Why not these features?

Some features have been deliberately omitted from PNG. These choices were made to simplify
implementation of PNG, promote portability and interchangeability, and make the format as
simple and foolproof as possible for users. In particular:

There is no uncompressed variant of PNG. It is possible to store uncompressed data by
using only uncompressed deflate blocks (a feature normally used to guarantee that deflate
does not make incompressible data much larger). However, any software that does not
support full deflate/inflate will not be considered compliant with the PNG standard. The
two most important features of PNG−−−portability and compression−−−are absolute
requirements for online applications, and users demand them. Failure to support full
deflate/inflate compromises both of these objectives.
There is no lossy compression in PNG. Existing formats such as JFIF already handle lossy
compression well. Furthermore, available lossy compression methods (e.g., JPEG) are far
from foolproof to use −−− a poor choice of quality level can ruin an image. To avoid user
confusion and unintentional loss of information, we feel it is best to keep lossy and lossless
formats strictly separate. Also, lossy compression is complex to implement. Adding JPEG
support to a PNG decoder might increase its size by an order of magnitude. This would
certainly cause some decoders to omit support for the feature, which would destroy our goal
of interchangeability.
There is no support for CMYK or other unusual color spaces. Again, this is in the name of
promoting portability. CMYK, in particular, is far too device−dependent to be useful as a
portable image representation.
There is no standard chunk for thumbnail views of images. In discussions with software
vendors who use thumbnails in their products, it has become clear that most would not use
a "standard" thumbnail chunk. This is partly because every vendor has a distinct idea of
what the dimensions and characteristics of a thumbnail should be, and partly because
vendors who keep thumbnails in separate files to accommodate varied image formats are
not going to stop doing that simply because of a thumbnail chunk in one new format.
Proprietary chunks containing vendor−specific thumbnails appear to be more practical
than a common thumbnail format.

It is worth noting that private extensions to PNG could easily add these features. We will not,
however, include them as part of the basic PNG standard.

Basic PNG also does not support multiple images in one file. This restriction is a reflection of the
reality that many applications do not need and will not support multiple images per file. (While
the GIF standard nominally allows multiple images per file, few applications actually support it.)

PNG Specification, Tenth Draft Page: 33

In any case, single images are a fundamentally different sort of object from sequences of images.
Rather than make false promises of interchangeability, we have drawn a clear distinction between
single−image and multi−image formats. PNG is a single−image format.

Why not use format XYZ?

Numerous existing formats were considered before deciding to develop PNG. None could meet the
requirements we felt were important for PNG.

GIF is no longer suitable as a universal standard because of legal entanglements. Although just
replacing GIF’s compression method would avoid that problem, GIF does not support truecolor
images, alpha channels, or gamma correction. The spec has more subtle problems too. Only a
small subset of the GIF89 spec is actually portable across a variety of implementations, but there is
no codification of the most portable part of the spec.

TIFF is far too complex to meet our goals of simplicity and interchangeability. Defining a TIFF
subset would meet that objection, but would frustrate users making the reasonable assumption that
a file saved as TIFF from Software XYZ would load into a program supporting our flavor of TIFF.
Furthermore, TIFF is not designed for stream processing, has no provision for progressive display,
and does not currently provide any good, legally unencumbered, lossless compression method.

IFF has also been suggested, but is not suitable in detail: available image representations are too
machine−specific or not adequately compressed. The overall chunk structure of IFF is a useful
concept which PNG has liberally borrowed from, but we did not attempt to be bit−for−bit
compatible with IFF chunk structure. Again this is due to detailed issues, notably the fact that IFF
FORMs are not designed to be serially writable.

Lossless JPEG is not suitable because it does not provide for the storage of palette−color images.
Furthermore, its lossless truecolor compression is often inferior to that of PNG.

Byte order

It has been asked why PNG uses network byte order. We have selected one byte ordering and used
it consistently. Which order in particular is of little relevance, but network byte order has the
advantage that routines to convert to and from it are already available on any platform that
supports TCP/IP networking, including all PC platforms. The functions are trivial and will be
included in the reference implementation.

Interlacing

PNG’s two−dimensional interlacing scheme is more complex to implement than GIF’s line−wise
interlacing. It also costs a little more in file size. However, it yields an initial image eight times
faster than GIF (the first pass transmits only 1/64th of the pixels, compared to 1/8th for GIF).
Although this initial image is coarse, it is useful in many situations. For example, if the image is a
World Wide Web imagemap that the user has seen before, PNG’s first pass is enough to determine
where to click. The PNG scheme also looks better than GIF’s, because horizontal and vertical
resolution never differ by more than a factor of two; this avoids the odd "stretched" look seen
when interlaced GIFs are filled in by replicating scanlines.

Why gamma encoding?

Although gamma 1.0 (linear brightness response) might seem a natural standard, it is common
for images to have a gamma of less than 1. There are two good reasons for this:

CRT hardware typically has a gamma between 2 and 3. Hence, "gamma correction" is a
standard part of all video signals. The transmitted image usually has a gamma of 0.45
(NTSC) or 0.36 (PAL/SECAM), so images obtained by frame−grabbing video already

PNG Specification, Tenth Draft Page: 34

have this value of gamma.
An image gamma less than 1 allocates more of the available pixel codes or voltage range
to darker areas of the image. This allows photographic−quality images to be stored in only
24 bits/pixel without banding artifacts in the darker areas (in most cases). This makes
"gamma encoding" a much better way of storing digital images than the simpler linear
encoding.

In practice, image gamma values around 1.0 and around 0.45 are both widely found. Older image
standards such as GIF often do not account for this fact, leading to widespread problems with
images coming out "too dark" or "too light".

PNG expects viewers to compensate for image gamma at the time that the image is displayed.
Another possible approach is to expect encoders to convert all images to a uniform gamma at
encoding time. While that method would speed viewers slightly, it has fundamental flaws:

Gamma correction is inherently lossy due to roundoff error. Requiring conversion at
encoding time thus causes irreversible loss. Since PNG is intended to be a lossless storage
format, this is undesirable; we should store unmodified source data.
The encoder might not know the image gamma. If the decoder does gamma correction at
viewing time, it can adjust the gamma (correct the displayed brightness) in response to
feedback from a human user. The encoder has no such option.
Whatever "standard" gamma we settled on would be wrong for some displays. Hence
viewers would still need gamma correction capability.

Since there will always be images with no gamma or an incorrect recorded gamma, good viewers
will need to incorporate gamma correction logic anyway. Gamma correction at viewing time is
thus the right way to go.

Non−premultiplied alpha

PNG uses "unassociated" or "non−premultiplied" alpha so that images with separate transparency
masks can be stored losslessly. Another common technique, "premultiplied alpha", stores pixel
values premultiplied by the alpha fraction; in effect, the image is already composited against a
black background. Any image data hidden by the transparency mask is irretrievably lost by that
method, since multiplying by a zero alpha value always produces zero.

Some image rendering techniques generate images with premultiplied alpha (the alpha value
actually represents how much of the pixel is covered by the image). This representation can be
converted to PNG by dividing the RGB values by alpha, except where alpha is zero. The result will
look good if displayed by a viewer that handles alpha properly, but will not look very good if the
viewer ignores the alpha channel.

Although each form of alpha storage has its advantages, we did not want to require all PNG
viewers to handle both forms. We standardized on non−premultiplied alpha as being the more
general case.

Filtering

PNG includes filtering capability because filtering can significantly reduce the compressed size of
truecolor and grayscale images. Filtering is also sometimes of value on palette images, although
this is less common.

The filter algorithms are defined to operate on bytes, rather than pixels; this gains simplicity and
speed with very little cost in compression performance. Tests have shown that filtering is usually
ineffective for images with fewer than 8 bits per pixel, so providing pixelwise filtering for such
images would be pointless. For 16 bit/pixel data, bytewise filtering is nearly as effective as pixelwise
filtering, because MSBs are predicted from adjacent MSBs, and LSBs are predicted from adjacent

PNG Specification, Tenth Draft Page: 35

LSBs.

The encoder is allowed to change filters for each new scanline. This creates no additional
complexity for decoders, since a decoder is required to contain unfiltering logic for every filter
type anyway. The only cost is an extra byte per scanline in the pre−compression data stream. Our
tests showed that when the same filter is selected for all scanlines, this extra byte compresses away
to almost nothing, so there is little storage cost compared to a fixed filter specified for the whole
image. And the potential benefits of adaptive filtering are too great to ignore. Even with the
simplistic filter−choice heuristics so far discovered, adaptive filtering usually outperforms fixed
filters. In particular, an adaptive filter can change behavior for successive passes of an interlaced
image; a fixed filter cannot.

The basic filters offered by PNG have been chosen on both theoretical and experimental grounds.
In particular, it is worth noting that all the filters (except "none" and "average") operate by
encoding the difference between a pixel and one of its neighboring pixels. This is usually superior
to conventional linear prediction equations because the prediction is certain to be one of the
possible pixel values. When the source data is not full depth (such as 5−bit data scaled up to 8−bit
depth), this restriction ensures that the number of prediction delta values is no more than the
number of distinct pixel values present in the source data. A linear equation can produce
intermediate values not actually present in the source data, and thus reduce compression
efficiency.

Text strings

Most graphics file formats include the ability to store some textual information along with the
image. But many applications need more than that: they want to be able to store several
identifiable pieces of text. For example, a database using PNG files to store medical X−rays would
likely want to include patient’s name, doctor’s name, etc. A simple way to do this in PNG would be
to invent new proprietary chunks holding text. The disadvantage of such an approach is that other
applications would have no idea what was in those chunks, and would simply ignore them. Instead,
we recommend that text information be stored in standard tEXt chunks with suitable keywords.
Use of tEXt tells any PNG viewer that the chunk contains text that may be of interest to a
human user. Thus, a person looking at the file with another viewer will still be able to see the text,
and even understand what it is if the keywords are reasonably self−explanatory. (To this end, we
recommend spelled−out keywords, not abbreviations that will be hard for a person to understand.
Saving a few bytes on a keyword is false economy.)

The ISO 8859−1 (Latin−1) character set was chosen as a compromise between functionality and
portability. Some platforms cannot display anything more than 7−bit ASCII characters, while
others can handle characters beyond the Latin−1 set. We felt that Latin−1 represents a widely
useful and reasonably portable character set. Latin−1 is a direct subset of character sets
commonly used on popular platforms such as Microsoft Windows and X Windows. It can also be
handled on Macintosh systems with a simple remapping of characters.

There is at present no provision for text employing character sets other than the Latin−1
character set. It is recognized that the need for other character sets will increase. However, PNG
already requires that programmers implement a number of new and unfamiliar features, and text
representation is not PNG’s primary purpose. Since PNG provides for the creation and public
registration of new ancillary chunks of general interest, it is expected that text chunks for other
character sets, such as Unicode, eventually will be registered and increase gradually in popularity.

PNG file signature

The first eight bytes of a PNG file always contain the following values:

(decimal) 137 80 78 71 13 10 26 10
(hex) 89 50 4e 47 0d 0a 1a 0a

PNG Specification, Tenth Draft Page: 36

(ASCII C notation) \211 P N G \r \n \032 \n

This signature both identifies the file as a PNG file and provides for immediate detection of
common file−transfer problems. The first two bytes distinguish PNG files on systems that expect
the first two bytes to identify the file type uniquely. The first byte is chosen as a non−ASCII value
to reduce the probability that a text file may be misrecognized as a PNG file; also, it catches bad
file transfers that clear bit 7. Bytes two through four name the format. The CR−LF sequence
catches bad file transfers that alter newline sequences. The control−Z character stops file display
under MS−DOS. The final line feed checks for the inverse of the CR−LF translation problem.

Additional confidence in correct file transfer can be had by checking that the next eight bytes are
an IHDR chunk header with the correct chunk length.

Note that there is no version number in the signature, nor indeed anywhere in the file. This is
intentional: the chunk mechanism provides a better, more flexible way to handle format
extensions, as is described below.

Chunk layout

The chunk design allows decoders to skip unrecognized or uninteresting chunks: it is simply
necessary to skip the appropriate number of bytes, as determined from the length field.

Limiting chunk length to (2^31)−1 bytes avoids possible problems for implementations that
cannot conveniently handle 4−byte unsigned values. In practice, chunks will usually be much
shorter than that anyway.

A separate CRC is provided for each chunk in order to detect badly−transferred images as quickly
as possible. In particular, critical data such as the image dimensions can be validated before being
used. The chunk length is excluded in order to permit CRC calculation while data is generated
(possibly before the length is known, in the case of variable−length chunks); this may avoid an
extra pass over the data. Excluding the length from the CRC does not create any extra risk of
failing to discover file corruption, since if the length is wrong, the CRC check will fail (the CRC
will be computed on the wrong bytes and then tested against the wrong value from the file).

Chunk naming conventions

The chunk naming conventions allow safe, flexible extension of the PNG format. This
mechanism is much better than a format version number, because it works on a
feature−by−feature basis rather than being an overall indicator. Decoders can process newer files
if and only if the files use no unknown critical features (as indicated by finding unknown critical
chunks). Unknown ancillary chunks can be safely ignored. Experience has shown that format
version numbers hurt portability as much as they help. Version numbers tend to be set
unnecessarily high, leading to older decoders rejecting files that they could have processed (this
was a serious problem for several years after the GIF89 spec came out, for example).
Furthermore, private extensions can be made either critical or ancillary, and standard decoders
will react appropriately; overall version numbers are no help for private extensions.

A hypothetical chunk for vector graphics would be a critical chunk, since if ignored, important
parts of the intended image would be missing. A chunk carrying the Mandelbrot set coordinates
for a fractal image would be ancillary, since other applications could display the image without
understanding what it was. In general, a chunk type should be made critical only if it is impossible
to display a reasonable representation of the intended image without interpreting that chunk.

The public/private property bit ensures that any newly defined public chunk type name cannot
conflict with proprietary chunks that may be in use somewhere. However, this does not protect
users of private chunk names from the possibility that someone else may re−use the same chunk
name for a different purpose. It is a good idea to put additional identifying information at the start

PNG Specification, Tenth Draft Page: 37

of the data for any private chunk type.

When a PNG file is modified, certain ancillary chunks may need to be changed to reflect changes
in other chunks. For example, a histogram chunk needs to be changed if the image data changes.
If the encoder does not recognize histogram chunks, copying them blindly to a new output file is
incorrect; such chunks should be dropped. The safe/unsafe property bit allows ancillary chunks to
be marked appropriately.

Not all possible modification scenarios are covered by the safe/unsafe semantics. In particular,
chunks that are dependent on the total file contents are not supported. (An example of such a
chunk is an index of IDAT chunk locations within the file: adding a comment chunk would
inadvertently break the index.) Definition of such chunks is discouraged. If absolutely necessary
for a particular application, such chunks may be made critical chunks, with consequent loss of
portability to other applications. In general, ancillary chunks may depend on critical chunks but
not on other ancillary chunks. It is expected that mutually dependent information should be put
into a single chunk.

In some situations it may be unavoidable to make one ancillary chunk dependent on another.
Although the chunk property bits do not allow this case to be represented, a simple solution is
available: in the dependent chunk, record the CRC of the chunk depended on. It can then be
determined whether that chunk has been changed by some other program.

The same technique may be useful for other purposes. For example, if a program relies on the
palette being in a particular order, it may store a private chunk containing the CRC of the PLTE
chunk. If this value matches when the file is again read in, then it provides high confidence that
the palette has not been tampered with. Note that it is not necessary to mark the private chunk
unsafe−to−copy when this technique is used; thus, such a private chunk can survive other editing
of the file.

Palette histograms

A viewer may not be able to provide as many colors as are listed in the image’s palette. (For
example, some colors may be reserved by a window system.) To produce the best results in this
situation, it is helpful to have information on the frequency with which each palette index
actually appears, in order to choose the best palette for dithering or drop the least−used colors.
Since images are often created once and viewed many times, it makes sense to calculate this
information in the encoder, although it is not mandatory for the encoder to provide it.

The same rationale holds good for palettes which are suggested quantizations of truecolor images.
In this situation, it is recommended that the histogram values represent "nearest neighbor"
counts, that is, the approximate usage of each palette entry if no dithering is applied. (These
counts will often be available for free as a consequence of developing the suggested palette.)

Other image formats have usually addressed this problem by specifying that the palette entries
should appear in order of frequency of use. That is an inferior solution, because it doesn’t give the
viewer nearly as much information: the viewer can’t determine how much damage will be done by
dropping the last few colors. Nor does a sorted palette give enough information to choose a target
palette for dithering, in the case that the viewer must reduce the number of colors substantially. A
palette histogram provides the information needed to choose such a target palette without making
a pass over the image data.

12. Appendix: Sample CRC Code

The following sample code represents a practical implementation of the CRC (Cyclic Redundancy
Check) employed in PNG chunks.

The sample code provided is in the C programming language. (See also ISO 3309 and ITU−T V.42

PNG Specification, Tenth Draft Page: 38

for a formal specification.)

/* table of crc’s of all 8−bit messages */
unsigned long crc_table[256];

/* Flag: has the table been computed? Initially false. */
int crc_table_computed = 0;

/* make the table for a fast crc */
void make_crc_table(void)
{
 unsigned long c;
 int n, k;

 for (n = 0; n < 256; n++) {
 c = (unsigned long) n;
 for (k = 0; k < 8; k++)
 c = (c & 1) ? (0xedb88320L ^ (c >> 1)) : (c >> 1);
 crc_table[n] = c;
 }
 crc_table_computed = 1;
}

/* update a running crc with the bytes buf[0..len−1]−−the crc should be
 initialized to all 1’s, and the transmitted value is the 1’s complement
 of the final running crc (see the crc() routine below)). */

unsigned long update_crc(unsigned long crc, unsigned char *buf, int len)
{
 unsigned long c = crc;
 unsigned char *p = buf;
 int n = len;

 if (!crc_table_computed)
 make_crc_table();
 if (n > 0) do {
 c = crc_table[(c ^ (*p++)) & 0xff] ^ (c >> 8);
 } while (−−n);
 return c;
}

/* return the crc of the bytes buf[0..len−1] */
unsigned long crc(unsigned char *buf, int len)
{
 if (!crc_table_computed)
 make_crc_table();
 return update_crc(0xffffffffL, buf, len) ^ 0xffffffffL;
}

13. Credits

Editor:

Thomas Boutell, boutell@netcom.com

Contributing Editor:

Tom Lane, tgl@sss.pgh.pa.us

Authors:

Authors’ names are presented in alphabetical order.

Mark Adler, madler@cco.caltech.edu
Thomas Boutell, boutell@netcom.com
Adam M. Costello, amc@cs.wustl.edu
Lee Daniel Crocker, lee@piclab.com
Oliver Fromme, fromme@rz.tu−clausthal.de

PNG Specification, Tenth Draft Page: 39

Jean−Loup Gailly, jloup@chorus.fr
Alex Jakulin, alex@hermes.si
Neal Kettler, kettler@cs.colostate.edu
Tom Lane, tgl@sss.pgh.pa.us
Dave Martindale, davem@cs.ubc.ca
Owen Mortensen, ojm@csi.compuserve.com
Glenn Randers−Pehrson, glennrp@arl.mil
Greg Roelofs, newt@uchicago.edu
Paul Schmidt, photodex@netcom.com
Tim Wegner, 71320.675@compuserve.com
Jeremy Wohl, jeremy@cs.sunysb.edu

The authors wish to acknowledge the contributions of the Portable Network Graphics mailing list
and the readers of comp.graphics.

Trademarks

GIF is a service mark of CompuServe Incorporated. Macintosh is a trademark of Apple
Computer, Inc. Microsoft and MS−DOS are trademarks of Microsoft Corporation. SGI is a
trademark of Silicon Graphics, Inc. X Window System is a trademark of the Massachusetts
Institute of Technology.

End of PNG Specification

PNG Specification, Tenth Draft Page: 40

